Abstract
Melanin-concentrating hormone-producing neurons (MCH neurons), found mainly in the lateral hypothalamus and surrounding areas, play essential roles in various brain functions, including sleep and wakefulness, reward, metabolism, learning, and memory. These neurons coexpress several neurotransmitters and act as glutamatergic neurons. The contribution of glutamate from MCH neurons to memory- and metabolism-related functions has not been fully investigated. In a mouse model, we conditionally knocked out Slc17a6 gene, which encodes for vesicular glutamate transporter 2 (vGlut2), in the MCH neurons exclusively by using two different methods: the Cre recombinase/loxP system and in vivo genome editing using CRISPR/Cas9. Then, we evaluated several aspects of memory and measured metabolic rates using indirect calorimetry. We found that mice with MCH neuron-exclusive vGlut2 ablation had higher discrimination ratios between novel and familiar stimuli for novel object recognition, object location, and three-chamber tests. In contrast, there was no significant change in body weight, food intake, oxygen consumption, respiratory quotient, or locomotor activity. These findings suggest that glutamatergic signaling from MCH neurons is required to regulate memory, but its role in regulating metabolic rate is negligible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.