Abstract

After denervation of adult rat abdominal muscles, the postsynaptic apparatus of neuromuscular junctions (NMJs) retains its original architecture and clustering of acetylcholine receptors (AChRs). When descending fibers of the spinal cord are surgically diverted to this muscle by a nerve grafting procedure, supraspinal glutamatergic neurons can innervate muscle fibers and restore motor function; the newly formed NMJs switch from a cholinergic to a glutamatergic-type synapse. We show here that regenerating nerve endings contact the fibers in an area occupied by cholinergic endplates. These NMJs are morphologically indistinguishable from those in controls, but they differ in the subunit composition of AChRs. Moreover, by immunofluorescence and immunoelectron microscopy, new NMJs express glutamatergic synapse markers. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1 partially colocalizes with AChRs, and vesicular glutamate transporter 2 is localized in the presynaptic compartment. Immunoprecipitation analysis of membranes from reinnervated muscle showed that AMPA receptor subunits GluR1 and GluR2 coimmunoprecipitate with rapsyn, the AChR-anchoring protein at the NMJ. Taken together, these results indicate that cholinergic endplates can be targeted by new glutamatergic projections and that the clustering of AMPA receptors occurs there.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.