Abstract

Mutations in the gene encoding Tau (MAPT-microtubule-associated protein tau) cause a group of neurodegenerative diseases called tauopathies. A recently identified Tau variant, p.A152T, has been reported as a risk factor for frontotemporal dementia-related disorders and Alzheimer disease. However, the mechanism for the pathologies still remain poorly understood. Transgenic Caenorhabditis elegans expressing mutant 2N4R-TauA152T (TauAT) panneuronally show locomotor defects, neurodegeneration and accelerated aging. Here we report that, in TauAT animals, the glutamatergic nervous system is at a high risk of progressive neuronal loss. We present genetic data that this loss occurs predominantly through necrosis. The neuronal loss is caused by several determinants, such as altered adenylyl cyclase (type AC9) pathway, prevalence of excitotoxicity-like conditions, aging-related factors and finally dyshomeostasis of intracellular calcium (Ca2+). The study provides novel insights into the mechanisms involved in selective loss of glutamatergic neurons in a TauAT tauopathy model which could point to new therapeutic targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.