Abstract

Glutamate plays a role in the central regulation of the hypothalamic–pituitary–adrenal (HPA) and thyroid (HPT) axes. Until the recent discovery of vesicular glutamate transporters (VGLUT1–3), there was no specific tool for the examination of the putative morphological relationship between the glutamatergic and the hypophysiotropic systems. Using antisera against VGLUT2, corticotropin-releasing hormone (CRH), and prothyrotropin-releasing hormone (proTRH) (178–199), we performed double-labeling immunocytochemistry at light and electron microscopic levels in order to study the glutamatergic innervation of the CRH- and TRH-synthesizing neurons in the hypothalamic paraventricular nucleus (PVN). Fine VGLUT2-immunoreactive (IR) axons very densely innervated the parvocellular subdivisions of the PVN. VGLUT2-IR axons established juxtapositions with all parvocellular CRH- and TRH-synthesizing neurons. The innervation was similarly intense in all parvocellular subdivisions of the PVN. At ultrastructural level, VGLUT2-IR terminals frequently established synapses with perikarya and dendrites of the CRH- and proTRH-IR neurons. These findings demonstrate that glutamatergic neurons directly innervate hypophysiotropic CRH and TRH neurons in the PVN and, therefore, support the hypothesis that the glutamate-induced activation of the HPA and HPT axes may be accomplished by a direct action of glutamate on hypophysiotropic CRH and TRH systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.