Abstract

Targeted drug delivery is a tool to make treatment more specific, selective, and effective and to prevent unwanted complications. Prostate specific membrane antigen (PSMA) is a useful biomarker in order to monitor and control prostate cancer. Glutamate-Urea-R (Glu-Urea-R) is a PSMA enzyme inhibitor capable of binding to this surface marker of prostate cancer cell in an efficient and special manner. The aim of this project was to develop a docetaxel-loaded nanoparticle of poly (lactic-co-glycolic acid) polyethylene glycol which is cojugated to a urea-based anti-PSMA ligand named glutamate-urea-lysine (glu-urea-lys) for targeted delivery of docetaxel in prostate cancer. The obtained nanoparticles, prepared by nanoprecipitation method, were spheres with a particle size of around 150 nm and zeta potential of −7.08 mV. Uptake studies on the PC3 (as PSMA negative) and LNCaP (as PSMA positive) cells demonstrated that drug uptake was efficient by the PSMA positive cells. IC50 of targeted NPs on LNCaP cell line compared to non-targeted ones was reduced by more than 70% in three different incubation times of 24, 48, and 72 h. In conclusion, the nanoparticles are expected to specifically transport docetaxel to PSMA-positive prostate cancer cells and consequently, enhance the antitumor efficacy of docetaxel on these cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call