Abstract

Excitatory postsynaptic currents (EPSCs) in the neocortex are principally mediated by glutamate receptors. Termination of excitation requires rapid removal of glutamate from the synaptic cleft following release. Glutamate transporters are involved in EPSC termination but the effect of uptake inhibition on excitatory neurotransmission varies by brain region. Epileptiform activity is largely mediated by a synchronous synaptic activation of cells in local cortical circuits, presumably associated with a large release of glutamate. The role of glutamate transporters in regulating epileptiform activity has not been addressed. Here we examine the effect of glutamate transport inhibition on EPSCs and epileptiform events in layer II/III pyramidal cells in rat neocortex. Inhibiting glutamate transporters with dl-threo-β-benzyloxyaspartic acid (TBOA; 30 μM) had no effect on the amplitude or decay time of evoked, presumably α-amino-3-hydroxyl-5-methyl-isoxazolepropionic acid-mediated, EPSCs. In contrast, the amplitude and duration of epileptiform discharges were significantly enhanced. TBOA resulted also in a decreased threshold for evoking epileptiform activity and an increased probability of occurrence of spontaneous epileptiform discharges. TBOA's effects were not inhibited by the group I and II metabotropic glutamate receptors antagonist ( S)-α-methyl-4-carboxyphenylglycine or the kainate receptor antagonist [(3 S,4a R, 6 S, 8a R)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid]. d-(−)-2-amino-5-phosphonovaleric acid could both prevent excitability changes by TBOA and block already induced changes. Dihydrokainate (300 μM) had effects similar to TBOA suggesting involvement of the glial transporter GLT-1. Inhibiting glutamate transport increases local network excitability under conditions where there is an enhanced release of glutamate. Our results indicate that uptake inhibition produces an elevation of extracellular glutamate levels and activation of N-methyl- d-aspartate receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call