Abstract

We studied the role of glutamate excitotoxicity in motor neuron degeneration in the wobbler mouse (wr/wr), a model of amyotrophic lateral sclerosis and spinal muscular atrophies. Choline acetyltransferase (ChAT) activity was decreased in the cervical spinal cord and in the muscles innervated by nerves originating in this region of wobbler mice, but no differences were found in the lumbar spinal cord and in the hindleg muscles. Glial fibrillar acid protein (GFAP), a marker of reactive gliosis, was significantly higher in the cervical spinal cord of wobbler mice aged 4 weeks than in controls and the differences were more marked at 12 weeks; no differences were found in the lumbar spinal cord. In spite of this selective degeneration of motor neurons (resulting in strong decrease in the neuronal glutamate transporter EAAC1) and reactive gliosis in the cervical spinal cord, the levels of the glial glutamate transporter proteins GLT-1 and GLAST were similar in wobbler and control mice. Plasma concentrations of excitatory amino acids were no different at any time examined. Our results exclude the involvement of decrease in glutamate GLT 1 transporter in the motor neuron degeneration in wobbler mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.