Abstract
In the plant cell fraction of Medicago sativa (L. cv Europe) nodules, glutamate synthase is active with reduced Fd, MV, NADH and NADPH as an electron donor. Up to 25 to 30 days after inoculation, the activities of Fd-dependent glutamate synthase (EC 1.4.1.7), the most active form of the enzyme, NADH-dependent (EC 1.4.1.14) and NADPH-dependent (EC 1.4.1.13) glutamate synthases increase about 2-fold followed by a relatively constant level per gram fresh weight of nodules. The activities of glutamate synthases with different electron carriers increase constantly about 30-fold after 46 days of inoculation by total fresh weight of nodules per plant. These nodule glutamate synthase activities with Fd, NADH or NADPH represent 30% relative to those of root glutamate synthases per plant with the respective electron donor. Fd-glutamate synthase in nodule plant fraction is a protein molecule immunochemically distinct from pyridine nucleotide-glutamate synthases. MV-linked enzyme activity is associated with Fd-glutamate synthase. The Fd-glutamate synthase has a subunit molecular mass of 68.2 kDa, and it exhibits a high affinity for spinach Fd as an electron carrier. The increase in Fd-glutamate synthase activity during nodule development is accompanied by a rise in the enzyme protein content. The total activity of different forms of glutamate synthase in vitro ensures a higher level than the rate of ammonia production during N2 fixation in bacteroids of Medicago sativa nodules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.