Abstract

Many previous studies have shown that lesions of the peripheral vestibular system result in spatial memory deficits and electrophysiological dysfunction in the hippocampus. Given the importance of glutamate as a neurotransmitter in the hippocampus, it was predicted that bilateral vestibular deafferentation (BVD) would alter the expression of NMDA and AMPA receptors in this area of the brain.MethodsThe expression of the NR1, NR2A, NR2B, GluR1, GluR2, GluR3 and GluR 4 glutamate receptor subunits, as well as calmodulin kinase IIα (CaMKIIα) and phosphorylated CaMKIIα (pCaMKIIα), was measured in the rat CA1, CA2/3 and dentate gyrus (DG) subregions of the hippocampus, at 24 h, 72 h, 1 week, 1 month and 6 months following BVD, using western blotting. In the 6 month group, half of the animals underwent spatial forced alternating training in a T-maze.Results and DiscussionFor the 24 h, 72 h, 1 week and 1 month data, there was no significant effect of surgery for any hippocampal subregion. However, for the 6 month data set, T maze training had a significant effect independently of surgery. The results of these experiments suggest that BVD is not associated with large changes in glutamate receptor subunit or CaMKIIα expression in the rat hippocampus, at least in terms of both the intra-cytoplasmic and membrane receptor subunits together, that western blotting can measure. However, spatial training-associated increases in glutamate receptor and CaMKIIα expression can be induced in BVD rats with impaired spatial performance. Therefore, the neurophysiological changes underlying BVD-induced spatial learning and memory deficits are more likely to be due to up and down regulation or changes in affinity/efficacy of glutamate receptors at the membrane level than changes in subunit transcription and transduction at the intra-cytoplasmic level.

Highlights

  • Numerous behavioural studies in animals have demonstrated that lesions of the peripheral vestibular system lead to spatial memory impairments that persist long after the acute vestibular reflex deficits have partially subsided or ‘compensated’ [1,2,3,4,5,6,7,8,9]

  • Previous studies involving unilateral vestibular deafferentation (UVD) in rats, which elicits a severe imbalance in vestibuloocular and vestibulo-spinal reflexes that gradually abates over time, showed that the expression of the NR1 and NR2A subunits of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor, decreased in the ipsilateral CA2/3 region at 2 weeks post-UVD, while the expression of the NR2A subunit was reduced in the contralateral CA2/3 region at the same time point [17]

  • Using a Linear discriminant analysis (LDA) on the CA1, CA2/3 or dentate gyrus (DG) data, no linear discriminant function could be identified that significantly predicted whether the brain tissue came from a bilateral vestibular deafferentation (BVD) or a sham animal

Read more

Summary

Introduction

Numerous behavioural studies in animals have demonstrated that lesions of the peripheral vestibular system lead to spatial memory impairments that persist long after the acute vestibular reflex deficits have partially subsided or ‘compensated’ [1,2,3,4,5,6,7,8,9]. Besnard et al [8] used a sequential UVD procedure, involving intratympanic sodium arsanilate injections (i.e., one ear, followed several weeks later by the other ear), and observed a significant increase in the NMDA receptor Bmax and a decrease in Kd in the hippocampus. This sequential UVD procedure has the advantage of relevance to paroxysmal vestibular disorders in humans in which the right vestibular labyrinth malfunctions, and the left, or vice versa, e.g. some types of Meniere’s disease [8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call