Abstract

To determine the distribution and glutamate-mediated activation of nuclear factor (NF) kappaB members in the retina and pan-purified retinal ganglion cells (RGCs) and to characterize steps in the signal transduction events that lead to NFkappaB activation. Retinal expression patterns and RGCs were evaluated for five NFkappaB proteins with the aid of immunohistochemistry. Retinal explants or RGCs were treated with glutamate with or without the presence of the NDMA receptor antagonist memantine, the calcium chelator EGTA, or a specific inhibitor for calcium/calmodulin-dependent protein kinase-II (CaMKII). Characterizations of NFkappaB activation were performed with the aid of electrophoretic mobility shift assays and supershift assays. All five NFkappaB proteins were present in the retina and in the pan-purified RGCs. In response to a glutamate stimulus, all NFkappaB proteins except c-Rel were activated. P65 was unique in that it was not constitutively active but showed a glutamate-inducible activation in the retina and in the cultured RGCs. Memantine, EGTA, or autocamtide-2-related inhibitory peptide (AIP) inhibited NFkappaB activation in the retina. Furthermore, AIP significantly reduced the level of glutamate-induced degradation of IkappaBs. These data indicate that glutamate activates distinct NFkappaB proteins in the retina. P65 activation may be especially important with regard to RGC responses to glutamate given that its activity is induced by conditions known to lead to the death of these cells. The NMDA receptor-Ca(2+)-CaMKII signaling pathway is involved in glutamate-induced NFkappaB activation. Because AIP blocks the degradation of IkappaB, its regulation is clearly downstream of CaMKII.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.