Abstract

The mechanism of the hepatotoxicity of the analgesic acetaminophen is believed to be mediated by covalent binding to protein; however, critical targets which effect the toxicity are unknown. It has been shown that mitochondrial respiration in vivo is inhibited in mice as early as 1 h following a hepatotoxic dose of acetaminophen, and it is postulated that covalent binding to critical mitochondrial proteins may be important. A time course of mitochondrial proteins stained with anti-acetaminophen in an immunoblot detected two major adducts of 50 and 67 kDa as early as 30 min after a hepatotoxic dose of acetaminophen in mice. To further understand the role of covalent binding to mitochondrial proteins and acetaminophen hepatotoxicity, we have purified and identified a 50 kDa mitochondrial protein which becomes covalently bound to a reactive metabolite of acetaminophen. An N-terminal sequence of the 50 kDa adduct was 100% homologous with the deduced amino acid sequence of glutamate dehydrogenase. In addition, the purified protein was immunochemically reactive with rat liver anti-glutamate dehydrogenase. Enzyme activity of glutamate dehydrogenase was significantly decreased in mice 1 h following hepatotoxic treatment with acetaminophen. These data suggest that acetaminophen hepatotoxicity may in part be mediated by covalent binding to glutamate dehydrogenase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.