Abstract

Combined retrograde tracing and immunocytochemical experiments were carried out on rats to ascertain whether corticocortical projecting neurons in the somatic sensory areas are immunoreactive to an antiserum against glutamate decarboxylase. Injections of a retrograde tracer (colloidal gold-labelled wheat germ agglutinin conjugated to enzymatically inactive horseradish peroxidase) in the first somatic sensory area labelled neurons in the injected area, in the second somatic sensory area, and in the parietoventral area of the ipsilateral hemisphere. The topographical and laminar distribution of these retrogradely-labelled corticocortical neurons in the first and second somatic sensory areas and in the parietoventral area was in line with a previous description (Fabri M. and Burton H. (1991b) J. comp. Neurol. 311, 405-424). In sections processed for the simultaneous visualization of the retrograde tracer and glutamate decarboxylase immunoreactivity, a number of neurons were double-labelled. Double-labelled neurons were most numerous in the first somatic sensory cortex, where they accounted for 5% of all retrogradely-labelled neurons. Outside this region, double-labelled cells were observed in the second somatic sensory cortex and in the parietoventral cortex, where they amounted respectively to 2.8% and 2.3% of all corticocortical neurons labelled in these two areas. Glutamate decarboxylase-immunopositive corticocortical neurons were mainly concentrated in the infragranular layers (73.8% of all double-labelled neurons in the first somatic sensory area, 81.7% in the second somatic sensory area, and 76.5% in the parietoventral area). The results indicate the presence of a small but significant contingent of GABAergic inhibitory neurons in the associative connections of the somatic sensory areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call