Abstract

Glutamate is of central importance in plant N metabolism since the biosynthesis of all other amino acids requires this compound. Glutamate dehydrogenase (GDH; EC 1.4.1.2), which catalyzes in vitro reversible reductive amination of 2-oxoglutatre to form glutamate, is a key player in the metabolism of glutamate. While most previous studies have indicated that the oxidative deamination is the in vivo direction of the GDH reaction, its physiological role has remained ambiguous for decades. We have recently isolated mutants for the two known Arabidopsis GDH genes and created a gdh double mutant. Our recent work revealed an increased susceptibility of the gdh double mutant to dark-induced C starvation, the first phenotype associated with the loss of GDH activity in plants. Monitoring the amino acid breakdown during the dark treatment also suggested that the deamination of glutamate catalyzed by GDH is central to the catabolism of many other amino acids.Addendum to: Miyashita Y, Good AG. NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. J Exp Bot 2008; 59:667-80.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.