Abstract

Cerebral cortex tissue was obtained at autopsy from neonatal Poll Hereford calves with clinically confirmed maple syrup urine disease (MSUD), neonatal Holstein-Friesian calves with clinically confirmed citrullinemia, and matched controls. From this, synaptosomes were prepared for studies of neurotransmitter amino acid uptake and stimulus-induced release, and synaptic plasma membranes were obtained for studies of associated postsynaptic receptor binding sites. As well as having abnormal brain tissue concentrations of the pathognomic plasma amino acids (markedly increased levels of the branched-chain compounds valine, isoleucine, and leucine in MSUD; marked elevation of citrulline levels in citrullinemia), both groups of diseased animals showed reduced brain tissue concentrations of each of the transmitter amino acids glutamate, aspartate, and gamma-aminobutyric acid (GABA). Nontransmitter amino acids were generally unaffected in either disease. Citrullinemic calves showed a marked increase in brain glutamine concentration; in calves with MSUD, the glutamine concentration was raised, but to a much lesser extent. The Na(+)-dependent synaptosomal uptake of both glutamate and GABA was markedly reduced (to less than 50% of control values in both cases) in citrullinemic calves but was unaltered in calves with MSUD. Whereas synaptosomes from normal calves showed the expected stimulus-coupled release of transmitter amino acids, especially glutamate and aspartate, and no response to stimulus of nontransmitter amino acids, there was no increased release of transmitter amino acids in response to depolarization in synaptosomes from citrullinemic calves.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.