Abstract

The effect of glutamate on plant plasma membrane cation transport was studied in roots of Arabidopsis thaliana (L.) Heynh. Patch-clamp experiments using root protoplasts, (22)Na(+) unidirectional fluxes into intact roots and measurements of cytosolic Ca(2+) activity using plants expressing cytosolically-targeted aequorin in specific cell types were carried out. It was demonstrated that low-millimolar concentrations of glutamate activate within seconds both Na(+) and Ca(2+) currents in patch-clamped protoplasts derived from roots. The probability of observing glutamate-activated currents increased with increasing glutamate concentration (up to 29% at 3 mM); half-maximal activation was seen at 0.2-0.5 mM glutamate. Glutamate-activated currents were voltage-insensitive, 'instantaneous' (completely activated within 2-3 ms of a change in voltage) and non-selective for monovalent cations (Na(+), Cs(+) and K(+)). They also allowed the permeation of Ca(2+). Half-maximal Na(+) currents occurred at 20-30 mM Na(+). Glutamate-activated currents were sensitive to non-specific blockers of cation channels (quinine, La(3+), Gd(3+)). Although low-millimolar concentrations of glutamate did not usually stimulate unidirectional influx of (22)Na(+) into intact roots, they reliably caused an increase in cytosolic Ca(2+) activity in protoplasts isolated from the roots of aequorin-transformed Arabidopsis plants. The response of cytosolic Ca(2+) activity revealed a two-phase development, with a rapid large transient increase (lasting minutes) and a prolonged subsequent stage (lasting hours). Use of plants expressing aequorin in specific cell types within the root suggested that the cell types most sensitive to glutamate were in the mature epidermis and cortex. The functional significance of these glutamate-activated currents for both cation uptake into plants and cell signaling remains the subject of speculation, requiring more knowledge about the dynamics of apoplastic glutamate in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.