Abstract

The neurotransmitters mediating the synaptic interactions in the pyloric system of the stomatogastric ganglion of a stomatopod, Squilla oratoria, were examined. Putative transmitters were applied iontophoretically to the pyloric cells. Glutamate and GABA produced inhibitory responses in all motoneurons but acetylcholine did not. These inhibitory responses were due to increases in conductance to either K+ or Cl− or both, and blocked by picrotoxin. The inhibitory postsynaptic potentials evoked by the constrictor and dilator neurons were different in their time courses, reversal potentials, ion selectivities, and picrotoxin sensitivities. Glutamate is a transmitter candidate for inhibitory synapses made among the pyloric cells as well as for their neuromuscular junctions. In some cells, glutamate and acetylcholine evoked excitatory responses which were blocked by joro spider toxin and by tubocurare, respectively. They mediated the extrinsic inputs to modulate the pyloric rhythm. The transmitter, glutamate, is conserved in the ganglion neurons between stomatopods and decapods during evolution. Use of two transmitters, glutamate and acetylcholine, may have evolved in decapods, while the ionic mechanism is preserved in both orders. The neuromodulators, acetylcholine and γ-aminobutyric acid, are conserved between both orders. Glutamate may be used as the neuromodulator in stomatopods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.