Abstract

In cancer, resistance to chemotherapy is one of the main reasons for therapeutic failure. Cells that survive after treatment with anticancer drugs undergo various changes, including in cell metabolism. In this study, we investigated the effects of AKT-mediated miR-125b-5p alteration on metabolic changes and examined how these molecules enhance migration and induce drug resistance in colon cancer cells. AKT1 and AKT3 activation in drug-resistant colon cancer cells caused aberrant downregulation of miR-125b-5p, leading to GLUT5 expression. Targeted inhibition of AKT1 and AKT3 restored miR-125b-5p expression and prevented glycolysis- and lipogenesis-related enzyme activation. In addition, restoring the level of miR-125b-5p by transfection with the mimic sequence not only significantly blocked the production of lactate and intracellular fatty acids but also suppressed the migration and invasion of chemoresistant colon cancer cells. GLUT5 silencing with small interfering RNA attenuated mesenchymal marker expression and migratory activity in drug-resistant colon cancer cells. Additionally, treatment with 2,5-anhydro-d-mannitol resensitized chemoresistant cancer cells to oxaliplatin and 5-fluorouracil. In conclusion, our findings suggest that changes in miR-125b-5p and GLUT5 expression after chemotherapy can serve as a new marker to indicate metabolic change-induced migration and drug resistance development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.