Abstract

Insulin stimulates glucose uptake into muscle and fat cells via recruitment of the glucose transporter 4 (GLUT-4) from intracellular store(s) to the cell surface. Robust stimulation of glucose uptake by insulin coincides with the expression of GLUT-4 during differentiation of muscle and fat cells, but it is not known if GLUT-4 expression suffices to confer insulin sensitivity to glucose uptake. We have therefore examined the effect of expression of a myc epitope-tagged GLUT-4 (GLUT-4myc) into L6 myoblasts, which do not express endogenous GLUT-4 until differentiated into myotubes. Ectopic expression of GLUT-4myc markedly improved insulin sensitivity of glucose uptake in L6 myoblasts. The GLUT-4myc protein distributed equally to the cell surface and intracellular compartments in myoblasts, and the intracellular fraction of GLUT-4myc further increased in myotubes. In myoblasts, the intracellular GLUT-4myc compartment contained the majority of the insulin-regulatable amino peptidase (IRAP) but less than half of the GLUT-1, suggesting segregation of GLUT-4myc and IRAP to a specific cellular locus. Insulin stimulation of phosphatidylinositol 3-kinase and protein kinase B-alpha activities was similar for L6-GLUT-4myc myoblasts and myotubes. At both stages, GLUT-4myc responded to insulin by translocating to the cell surface. These results suggest that GLUT-4myc segregates into a specific compartment in L6 myoblasts and confers insulin sensitivity to these cells. L6-GLUT-4myc myoblasts, which are easily transfectable with various constructs, are a useful resource to study insulin action.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call