Abstract
Focal cortical dysplasia (FCD) is recognized as a significant etiological factor in pharmacoresistant intractable epilepsy, linked with disturbances in neurovascular metabolism. Our study investigated regulation of glucose-transporter1 (GLUT1) and cerebral hypometabolism within FCD subtypes. Surgically excised human brain specimens underwent histopathological categorization. A subset of samples (paired with matching blood) was assessed for DNA methylation changes of glucose metabolism-related genes. We evaluated GLUT1, VEGFα, MCT2, and mTOR expression by western blot analysis, measured glucose-lactate concentrations, and established correlations with patients' demographic and clinical profiles. Furthermore, we investigated the impact of DNA methylation inhibitor decitabine and hypometabolic condition on the uptake of [3H]-2-deoxyglucose and ATPase in epileptic brain endothelial cells (EPI-EC). We observed hypermethylation of GLUT1 and glucose metabolic genes in FCD brain/blood samples and could distinguish FCDIIa/b from mMCD, MOGHE and non-lesional types in brain. Low GLUT1 and glucose-lactate ratios corresponded to elevated VEGFα and MCT2 in FCDIIa/b vs non-lesional tissues, independent of age, gender, seizure-onset, or duration of epilepsy. Increased mTOR signaling in FCDIIa/b tissues was evident. Decitabine stimulation increased GLUT1, decreased VEGFα expression, restored glucose uptake and ATPase activity in EPI-ECs and reduced mTOR and MCT2 levels in HEK cells. We demonstrated: 1) hypermethylation of glucose regulatory genes distinguish FCDIIa/b from mMCD, MOGHE and non-lesional types, 2) glucose uptake reduction is due to GLUT1 suppression mediated possibly by a GLUT1-mTOR mechanism; and 3) DNA methylation regulates cellular glucose update and metabolism. Together, these studies may lead to GLUT1-mediated biomarkers, glucose metabolism and identify early intervention strategies in FCD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.