Abstract

The recent results in \sqrt{s}=2.76 TeV Pb+Pb collisions at the Large Hadron Collider (LHC) reported by the ALICE collaboration shows that the power-law energy-dependence of charged hadron multiplicity in Pb+Pb collisions is significantly different from p+p collisions. We show that this different energy-dependence can be explained by inclusion of a strong angular-ordering in the gluon-decay cascade within the Color-Glass-Condensate (or gluon saturation) approach. This effect is more important in nucleus-nucleus collisions where the saturation scale is larger than 1 GeV. Our prescription gives a good description of the LHC data both in p+p and Pb+Pb collisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call