Abstract

We have observed the formation of gluon flux-tubes within baryons using lattice QCD techniques. A high-statistics approach, based on translational and rotational symmetries of the four-dimensional lattice, enables us to observe correlations between vacuum action density and quark positions in a completely gauge independent manner. This contrasts with earlier studies which used gauge-dependent smoothing techniques. We used 200 O(a^2) improved quenched QCD gauge-field configurations on a 16^3x32 lattice with a lattice spacing of 0.123 fm. In the presence of static quarks flux tubes representing the suppression of gluon-field fluctuations are observed. We have analyzed 11 L-shapes and 8 T and Y shapes of varying sizes in order to explore a variety of flux-tube topologies, including the ground state. At large separations, Y-shape flux-tube formation is observed. T-shaped paths are observed to relax towards a Y-shaped topology, whereas L-shaped paths give rise to a large potential energy. We do not find any evidence for the formation of a Delta-shaped flux-tube (empty triangle) distribution. However, at small quark separations, we observe an expulsion of gluon-field fluctuations in the shape of a filled triangle with maximal expulsion at the centre of the triangle. Having identified the precise geometry of the flux distribution, we are able to perform quantitative comparison between the length of the flux-tube and the associated static quark potential. For every source configuration considered we find a universal string tension, and conclude that, for large quark separations, the ground state potential is that which minimizes the length of the flux-tube. The flux tube radius of the baryonic ground state potential is found to be 0.38 \pm 0.03 fm, with vacuum fluctuations suppressed by 7.2 \pm 0.6 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.