Abstract

Gluon distributions in real and virtual photons are calculated using evolution equations in the NLO approximation. The quark distributions in the photon determined on the basis of the QCD sum rule approach in [1] are taken as an input. It is shown that gluon distribution in the photon can be reliably determined up tox=0.03÷0.05, much lower than the corresponding values in the case of quark distributions. Two variants of the calculations are considered: (1) it is assumed that there are no intrinsic gluons in the photon at some low normalization pointQ 2=Q 20 ∼1GeV2; (2) it is assumed that gluonic content of the photon at lowQ 20 is described by gluonic content of vector mesonsρ, ω, ϕ. The gluon distributions in these two variants appear to be different. This fact permits one to clarify the origin of nonperturbative gluonic content of the photon by comparing the results with experiment. Structure functionsF 2(x) for real and virtual photon are calculated and it is shown that in the regionx≥0.2 where QCD approach is valid, there is a good agreement with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.