Abstract

NMDA receptors are important players for neuronal differentiation. We previously reported that antagonizing NMDA receptors with APV blocked the growth-promoting effects evoked by the overexpression of specific calcium-permeable or flip-spliced AMPA receptor subunits and of type I transmembrane AMPA receptor regulatory proteins which both exclusively modify apical dendritic length and branching of cortical pyramidal neurons. These findings led us to characterize the role of GluN2B and GluN2A for dendritogenesis using organotypic cultures of rat visual cortex. Antagonizing GluN2B with ifenprodil and Ro25-6981 strongly impaired basal dendritic growth of supra- and infragranular pyramidal cells at DIV 5–10, but no longer at DIV 15–20. Growth recovered after washout, and protein blots revealed an increase of synaptic GluN2B-containing receptors as indicated by a enhanced phosphorylation of the tyrosine 1472 residue. Antagonizing GluN2A with TCN201 and NVP-AAM077 was ineffective at both ages. Dendrite growth of non-pyramidal interneurons was not altered. We attempted to overexpress GluN2A and GluN2B. However, although the constructs delivered currents in HEK cells, there were neither effects on dendrite morphology nor an enhanced sensitivity to NMDA. Further, co-expressing GluN1-1a and GluN2B did not alter dendritic growth. Visualization of overexpressed, tagged GluN2 proteins was successful after immunofluorescence for the tag which delivered rather weak staining in HEK cells as well as in neurons. This suggested that the level of overexpression is too weak to modify dendrite growth. In summary, endogenous GluN2B, but not GluN2A is important for pyramidal cell basal dendritic growth during an early postnatal time window.

Highlights

  • Dendritic growth is a highly dynamic process (Wong and Ghosh, 2002)

  • Since previous data had indicated a role of NMDA receptors (NMDARs) (Hamad et al, 2011), we included a treatment with ifenprodil

  • Acute wash-in of CX546 at concentrations up to 1 mM did not evoke dendritic beading in 10 DIV Organotypic Cultures (OTC), and there was no neuroprotection by ifenprodil (CX546: 4.3 + −1.1% neurons with dendritic beading, 227 neurons from 5 OTC; control, vehicle stimulated: 3.8 + −1.0% neurons with dendritic beading, 233 neurons from 5 OTC; ifenprodil pretreatment followed by ampakine: 3.9 + −1.3% neurons with dendritic beading, 289 neurons from 4 OTC; this is in the

Read more

Summary

Introduction

Dendritic growth is a highly dynamic process (Wong and Ghosh, 2002). Elongation and outgrowth of side branches and retraction-remodeling occur within short time windows of hours and days as has been shown for tadpole tectal neurons (Cline, 2001). GluN2B for Dendritic Growth activity for instance evoked by rearing in an enriched environment leads to an enhanced dendritic complexity (Volkmar and Greenough, 1972). Repetitive maze training enhances branching of distal apical, but not basal dendrites of layer IV and V pyramidal cells in visual cortex even of adult animals (Greenough et al, 1979), whereas deprivation of activity leads to a stunted growth. Depolarization is translated into calcium currents via voltagegated channels and NMDA receptors (NMDARs) (Konur and Ghosh, 2005), activation of G-protein signaling (Van Aelst and Cline, 2004), local protein synthesis, and the release of trophic factors acting in a paracrine or autocrine manner (McAllister, 2000; Wong and Ghosh, 2002; Wirth et al, 2003)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call