Abstract

It is widely accepted that NMDA receptors (NMDAR) are required for learning and memory formation, and for synaptic plasticity induction. We have previously shown that hippocampal GluN1 and GluN2A NMDAR subunits significantly increased following habituation of rats to an open field (OF), while GluN2B remained unchanged. Similar results were obtained after CA1-long-term potentiation (LTP) induction in rat hippocampal slices. Other studies have also shown NMDAR up regulation at earlier and later time points after LTP induction or learning acquisition. In this work, we have studied NMDAR subunits levels in the hippocampus and prefrontal cortex (PFC) after OF habituation and after object recognition (OR), to find out whether rising of NMDAR subunits is a general and structure-specific feature during memory formation. In 1, 2 and 3 month old rats there was an increase in hippocampal GluN1 and GluN2A, but not in GluN2B levels 70 min after OF habituation. This rise overlaps with early phase of memory consolidation, suggesting a putative relationship between them. The increases fell down to control levels 90 min after training. Similar results were obtained in the hippocampus of adult rats 70 min after OR training, without changes in PFC. Following OF test or OR discrimination phase, NMDAR subunits remained unchanged. Hence, rising of hippocampal GluN1 and GluN2A appears to be a general feature after novel “spatial/discrimination” memory acquisition. To start investigating the dynamics and possible mechanisms of these changes, we have studied hippocampal neuron cultures stimulated by KCl to induce plasticity. GluN1 and GluN2A increased both in dendrites and neuronal bodies, reaching a maximum 75 min later and returning to control levels at 90 min. Translation and/or transcription and mobilization differentially contribute to this rise in subunits in bodies and dendrites. Our results showed that the NMDAR subunits increase follows a similar time course both in vitro and in vivo. These changes happen in the hippocampus where a spatial representation of the environment is being formed making possible short term and long term memories (STM and LTM); appear to be structure-specific; are preserved along life; and could be related to synaptic tagging and/or to memory consolidation of new spatial/discrimination information.

Highlights

  • Memories are internal representations of previously learnt experiences

  • We have shown that following habituation of young adult rats to a new environment and after effective long-term potentiation (LTP) induction by theta burst stimulation (TBS) in fresh hippocampal slices, there was an increase in hippocampal GluN1 and GluN2A subunits, about 70 min later

  • Hippocampal NMDA receptors (NMDAR) Subunits Levels after Habituation at Different Ages We have previously shown that hippocampal GluN1 and GluN2A NMDAR subunits were increased, whereas GluN2B appeared to remain unchanged, 60–70 min following either synaptic plasticity induction by TBS in vitro, in fresh hippocampal slices or after habituation to a new environment in adult Wistar rats (Baez et al, 2013)

Read more

Summary

Introduction

Memories are internal representations of previously learnt experiences. Depending on their lasting, memories are currently classified as short term and long term memories (STM and LTM respectively). LTM could last from several hours to many years and involves changes in protein synthesis, gene expression and synaptic plasticity (Mayford et al, 2012; Dudai et al, 2015). Memory consolidation involves new protein synthesis (see Jarome and Helmstetter, 2014) since the infusion of translation inhibitors (i.e., cycloheximide or anysomicin) during early memory consolidation impairs retrieval in several paradigms (Rossato et al, 2007; Artinian et al, 2008; Gilmartin and Helmstetter, 2010; Reis et al, 2013; Kwapis et al, 2015)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call