Abstract

We derive the Barrett-Crane spin foam model for Euclidean 4-dimensional quantum gravity from a discretized $\mathrm{BF}$ theory, imposing the constraints that reduce it to gravity at the quantum level. We obtain in this way a precise prescription of the form of the Barrett-Crane state sum, in the general case of an arbitrary manifold with boundary. In particular we derive the amplitude for the edges of the spin foam from a natural procedure of gluing different 4-simplices along a common tetrahedron. The generalization of our results to higher dimensions is also shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.