Abstract

Within gauge/gravity duality, we compute the scalar and tensor mass spectrum in the boundary theory defined by the five-dimensional sigma-model coupled to gravity obtained by constraining to eight scalars the truncation on T1,1 that corresponds to the Papadopoulos-Tseytlin (PT) ansatz. We study fluctuations around the 1-parameter family of backgrounds that lift to the baryonic branch of the Klebanov-Strassler (KS) system, and interpolates between the KS background and the Maldacena-Nunez one (CVMN). We adopt a gauge invariant formalism in the treatment of the fluctuations that we interpret as states of the dual theory. The tensor spectrum interpolates between the discrete spectrum of the KS background and the continuum spectrum of the CVMN background, in particular showing the emergence of a finite energy range containing a dense set of states, as expected from dimensional deconstruction. The scalar spectrum shows analogous features, and in addition it contains one state that becomes parametrically light far from the origin along the baryonic branch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.