Abstract

We review the calculation of the spectrum of glueball masses in nonsupersymmetric Yang-Mills theory using the conjectured duality between supergravity and large N gauge theories. The glueball masses are obtained by solving the supergravity wave equations in a black hole geometry. The glueball masses found this way are in unexpected agreement with the available lattice data. We also show how to use a modified version of the duality based on rotating branes to calculate the glueball mass spectrum with some of the Kaluza-Klein states of the supergravity theory decoupled from the spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.