Abstract

Glucuronyl C5-epimerase (Hsepi) is a key enzyme in the biosynthesis of heparan sulfate that is a sulfated polysaccharide expressed on the cell surface and in the extracellular matrix of alveolar walls and blood vessels. Targeted interruption of the Hsepi gene, Glce, in mice resulted in neonatal lethality, which is most likely due to lung atelectasis. In this study, we examined the potential mechanisms behind the defect in lung development. Histological analysis of the lungs from embryos revealed no difference in the morphology between wild-type and mutant animals up to E16.5. This suggests that the initial events leading to formation of the lung primordium and branching morphogenesis are not disturbed. However, the distal lung of E17.5-18.5 mutants is still populated by epithelial tubules, lacking the typical saccular structural characteristic of a normal E17.5 lung. Immunostaining revealed strong signals of surfactant protein-C, but a weaker signal of T1α in the mutant lungs in comparison to WT littermates, suggesting differentiation of type I alveolar epithelial cells (AT1) is impaired. One of the parameters contributed to the failure of AT1 maturation is reduced vascularization in the developing lungs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call