Abstract

Enzymatically modified isoquercitrin (EMIQ), oligoglucosyl naringenin-7-(glucose [G]), and oligoglucosyl hesperetin (H)-7-G were produced via oligoglucosylation of quercetin-3-glucose, naringenin-7-G (prunin), and H-7-G, respectively, by cyclodextrin glucosyltransferase from Bacillus macerans. The aim was to explore the oligoglucosylation and the resulting changes in physicochemical properties. Water solubility of EMIQ, oligoglucosyl prunin, and oligoglucosyl H-7-G enormously increased in comparison with that of their aglycones. Glycosylation of an aglycone generally enhances its solubility. Resistance of the aglycones to oxidative degradation by the Cu2+ ion was strongly increased by the oligoglucosylation. This is probably because oligoglucosylation may protect sensitive parts of an aglycones molecule from the Cu2+ oxidation. Only EMIQ maintained its structure during thermal treatment much longer than quercetin did. Degradation of flavonoid aglycones by ultraviolet light C irradiation at 254nm was not affected, and their antioxidant activities gradually decreased with the greater extent of oligoglucosylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call