Abstract

AbstractThis work investigates the potential of glycosylation to actively target nanodrug delivery systems to adult solid tumors overexpressing glucose transporters. The highly hydrophobic fluorescent compound curcumin (CUR) is nanoencapsulated within polymeric micelles of pristine and glucosylated poly(ethylene oxide)‐poly(propylene oxide) block copolymers, and their interaction with breast cancer (BC) cells is investigated in vitro and in vivo. The aqueous solubility of CUR is increased more than 50 000‐fold and spherical nanoparticles display size in the 40 to 500 nm range, as determined by transmission electron microscopy and by dynamic light scattering, respectively. Uptake studies conducted in the BC cell line 4T1 in vitro demonstrate that glucosylation enhances nanoparticle internalization. Finally, the ability of unmodified and glucosylated polymeric micelles to accumulate in female BALB/c mice bearing 4T1‐induced tumors is compared by ex vivo bioimaging with auspicious results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.