Abstract
Chemoprotective or genotoxic effects of glucosinolates occurring in Brassica vegetables are attributed to their hydrolysis products formed upon tissue damage by plant myrosinase. Since Brassica vegetables, in which myrosinase has been heat-inactivated, still display bioactivity, glucosinolate activation has been attributed to intestinal bacteria. The aim of this study was to investigate whether this is true. Glucoraphanin (172 mg/kg body weight) and neoglucobrassicin (297 mg/kg body weight) were administered intragastrically to germ free and human microbiota associated (HMA) mice. Approximately 30% of the applied doses of glucoraphanin and neoglucobrassicin were excreted unchanged in the urine of both germ free and HMA mice. Isothiocyanates, sulforaphane, and erucin, formed from glucoraphanin, were mainly excreted as urinary N-acetyl-l-cysteine conjugates. N-Methoxyindole-3-carbinol formed from neoglucobrassicin was observed in small amounts in both germ free and HMA mice. Formation of DNA adducts from neoglucobrassicin was also independent from bacterial colonization of the mice. Hence, intestinal bacteria are involved in the bioactivation of glucosinolates in the gut, but their contribution to glucosinolate transformation in HMA mice is apparently very small.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.