Abstract

Ab initio molecular dynamics simulations reveal that an excess electron (EE) can be more efficiently localized as a cavity-shaped state in aqueous glucose solution (AGS) than in water. Compared with that (∼1.5 ps) in water, the localization time is shortened by ∼0.7-1.2 ps in three AGSs (0.56, 1.12, and 2.87 M). Although the radii of gyration of the solvated EEs are all close to 2.6 Å in the four solutions, the solvated EE cavities in the AGSs become more compact and can localize ∼80% of an EE, which is considerably larger than that (∼40-60% and occasionally ∼80%) in water. These observations are attributed to a modification of the hydrogen-bonded network by the introduction of glucose molecules into water. The water acts as a promoter and stabilizer, by forming voids around glucose molecules and, in this fashion, favoring the localization of an EE with high efficiency. This study provides important information about EEs in physiological AGSs and suggests a new strategy to efficiently localize an EE in a stable cavity for further exploration of biological function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call