Abstract

Brain ischemia activates Ca(2+)-dependent synaptic vesicle exocytosis. The synaptosomal-associated protein 25 (SNAP-25) and syntaxin proteins, located on presynaptic terminals, are components of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex and play a key role in regulating exocytosis. Changes in the expression of SNAREs could affect SNARE complex formation, fusion of vesicles with the presynaptic membrane, and release of neurotransmitters through exocytosis. To investigate the relationship of glucose/oxygen deprivation (GOD)/reperfusion-induced neuronal damage and alteration of presynaptic function, we examined the expression of SNAREs and complexin during GOD and reperfusion using organotypic hippocampal slice cultures. Microtubule-associated protein 2 (MAP-2) staining and transmission electron microscopy showed that neuronal damage increased in a time-dependent manner and both types of neuronal death can occur at different times during GOD and reperfusion. The immunoreactivity of SNAREs such as SNAP-25, vesicle-associated membrane protein and syntaxin and complexin increased in pyramidal cell bodies in the CA1 and CA3 areas in a time-dependent manner following reperfusion. Our data suggest that alteration of presynaptic function may play a partial role in delayed neuronal death during GOD and reperfusion in organotypic hippocampal slice cultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.