Abstract

Carbon nanomaterials with small size and unique optical properties have attracted intensive interest for their promising biomedical applications. In this work, glucose-derived carbonaceous nanospheres (CNSs) with high photothermal conversion efficiency up to 35.1% are explored for the first time as a novel carbon-based theranostic agent. Different from most other carbon nanomaterials, the obtained CNSs are highly biocompatible and nontoxic because of their intrinsic hydrophilic property and the use of glucose as raw materials. Under near-infrared laser irradiation (808 nm, 6 W cm(-2)) for 10 min, less than 15% of PC-3M-IE8 cells exposed to CNSs aqueous dispersions (0.16 mg/mL) remained alive. After intravenous administration of CNSs aqueous dispersions into nude mice, the photoacoustic intensity of the tumor region is about 2.5 times higher than that of preinjection. These results indicate that CNSs are suitable for simultaneous photoacoustic imaging and photothermal ablation of cancer cells and can serve as promising biocompatible carbon-based agents for further clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.