Abstract

BackgroundGlucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymopathy in humans, is prevalent in tropical and subtropical areas where malaria is endemic. Anti-malarial drugs, such as primaquine and tafenoquine, can cause haemolysis in G6PD-deficient individuals. Hence, G6PD testing is recommended before radical treatment against vivax malaria. Phenotypic assays have been widely used for screening G6PD deficiency, but in heterozygous females, the random lyonization causes difficulty in interpreting the results. Over 200 G6PD variants have been identified, which form genotypes associated with differences in the degree of G6PD deficiency and vulnerability to haemolysis. This study aimed to assess the frequency of G6PD mutations using a newly developed molecular genotyping test.MethodsA multiplexed high-resolution melting (HRM) assay was developed to detect eight G6PD mutations, in which four mutations can be tested simultaneously. Validation of the method was performed using 70 G6PD-deficient samples. The test was then applied to screen 725 blood samples from people living along the Thai–Myanmar border. The enzyme activity of these samples was also determined using water-soluble tetrazolium salts (WST-8) assay. Then, the correlation between genotype and enzyme activity was analysed.ResultsThe sensitivity of the multiplexed HRM assay for detecting G6PD mutations was 100 % [95 % confidence interval (CI): 94.87–100 %] with specificity of 100 % (95 % CI: 87.66–100 %). The overall prevalence of G6PD deficiency in the studied population as revealed by phenotypic WST-8 assay was 20.55 % (149/725). In contrast, by the multiplexed HRM assay, 27.17 % (197/725) of subjects were shown to have G6PD mutations. The mutations detected in this study included four single variants, G6PD Mahidol (187/197), G6PD Canton (4/197), G6PD Viangchan (3/197) and G6PD Chinese-5 (1/197), and two double mutations, G6PD Mahidol + Canton (1/197) and G6PD Chinese-4 + Viangchan (1/197). A broad range of G6PD enzyme activities were observed in individuals carrying G6PD Mahidol, especially in females.ConclusionsThe multiplexed HRM-based assay is sensitive and reliable for detecting G6PD mutations. This genotyping assay can facilitate the detection of heterozygotes, which could be useful as a supplementary approach for high-throughput screening of G6PD deficiency in malaria endemic areas before the administration of primaquine and tafenoquine.

Highlights

  • Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymopathy in humans, is prevalent in tropical and subtropical areas where malaria is endemic

  • It should be noted that the results reported here are based on the Water-soluble tetrazolium salts (WST)-8 assay, which is an alternative to the standard method for measuring G6PD activity

  • A multiplexed high-resolution melting (HRM) assay for the detection of eight common G6PD mutations in Thailand was developed

Read more

Summary

Introduction

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymopathy in humans, is prevalent in tropical and subtropical areas where malaria is endemic. Anti-malarial drugs, such as primaquine and tafenoquine, can cause haemolysis in G6PD-deficient individuals. G6PD testing is recommended before radical treatment against vivax malaria. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an inherited genetic defect and the most common enzymopathy, affecting approximately 500 million people worldwide with more than 200 variants have been identified [1]. G6PD deficiency is prevalent in tropical and subtropical areas where malaria is endemic, including Africa and Southeast Asia [2]. The major clinical concern associated with G6PD deficiency is haemolysis upon exposure to oxidant drugs, including antimalarials such as 8-aminoquinolines (primaquine and tafenoquine) [10,11,12,13]. The World Health Organization (WHO) recommends that G6PD activity be measured before efforts to perform radical treatment of malaria [14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call