Abstract

Stroke is a severe complication of sickle cell anemia (SCA). The role of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the development of stroke in children with SCA is controversial. The aim of this study was to investigate the association of clinical ischemic stroke, high-risk transcranial Doppler measurements (TCD), and hematological features with molecular variants usually linked to G6PD deficiency or with the biochemical activity of G6PD in a cohort of 395 Brazilian children with SCA. G6PD activity was quantitatively determined using an enzymatic-colorimetric assay. G6PD mutations were determined by PCR-RFLP and sequencing. Clinical and hematological data were retrieved from the children's records. The prevalence of molecularly defined deficiency (hereafter, molecular deficiency) was 4.3% (95% confidence interval: 2.3-6.3%). The mean G6PD activity was 16.88 U/g hemoglobin (Hb) (standard error of the mean [SEM] 0.28) in the group without G6PD molecular deficiency and 8.43 (SEM 1.01) U/g Hb in the group with G6PD A(-) molecular deficiency. G6PD molecular deficiency was not associated with any hematological features. No effects of G6PD molecular deficiency on clinical ischemic stroke or high-risk TCD were detected. The mean G6PD activity was similar in children who had clinical ischemic stroke and in those without stroke. Similar results were obtained in analyses comparing children who had high-risk TCD and those without high-risk TCD. Our study demonstrated that G6PD molecular deficiency was not associated either with clinical ischemic stroke or high-risk TCD. Similarly, we found no associations between G6PD enzyme activity and stroke or high-risk TCD. Small sample size precludes definitive conclusions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call