Abstract

Glucose transport kinetics were quantified in isolated bovine mammary epithelial cells using 3-O-methyl-D-glucose. Isolated cells retained satisfactory viability and glucose uptake activity, which was inhibited by cytochalasin B, phloretin, HgCl2, and low temperature. Initial rates of entry were measured over a 15-s interval at 37 degrees C under zero-trans, equilibrium-exchange, high-cis, and high-trans concentrations of 3-O-methyl-D-glucose between 0 and 20 mM. The combined set of rate measurements from all experimental conditions was fit to the fixed-site carrier model by nonlinear regression to estimate parameters of transport. For the regression between predicted and observed initial rates, r2 was 0.97. Forward Vmax was estimated at 18.2 nmol.min-1.mg protein-1, and the Michaelis constant was 8.29 mM. The cooperativity parameter was 1.63, trans-stimulation was 2.13-fold, and asymmetry was 2.06-fold. On the basis of the kinetic parameters, variations in intracellular glucose concentrations are not responsible for the range of glucose uptakes by bovine mammary glands observed in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.