Abstract

The purpose of this study was to characterize the mechanisms by which glucose regulates IGF-I gene expression in rat C6 glioma cells and in rat GH3 pituitary adenoma cells. Glucose starvation for periods of 12 to 48 h decreased IGF-I mRNA levels. In contrast, there was no stimulation of IGF-I mRNA by medium glucose between 1 and 25 mM over a 24-h period. Studies with hexoses and glycolytic metabolites suggested that glucose metabolism was required to maintain IGF-I mRNA. Glucose starvation lowered IGF-I mRNA half-life in both C6 and GH3 cells. Protein synthesis inhibition lowered IGF-I mRNA by about 20% in glucose-fed C6 and GH3 cells, while potently increasing IGF-I mRNA in glucose-starved C6 cells and not altering IGF-I mRNA in glucose-starved GH3 cells. Our results suggest that in these tumor cells, IGF-I mRNA stability is reduced by glucose starvation, secondary to a deficiency in intracellular glucose metabolism. Ongoing protein synthesis is not required for this mRNA de-stabilizing effect in GH3 cells. Rather, in glucose-starved C6 cells, decreased IGF-I mRNA stability may result from the action of a labile protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.