Abstract

In this work, we report a new sensing approach based on electrogenerated chemiluminescence (ECL) in an electrodeposited redox hydrogel using glucose dehydrogenase as a model system. The ECL-hydrogel films were electrodeposited by potential cycling of a PBS solution containing [poly(4-vinylpyridine)Ru(2,2′-bipyridine) 2Cl −] +/2+. The film was easily prepared in a rapid, reproducible and well-controlled one-step procedure. The deposited hydrogel film is permeable to water-soluble chemicals and biochemicals, like enzyme substrates and coenzymes. Electrochemistry and ECL of NADH were studied at the level of the hydrogel film. Results indicate that ECL emission occurs at a relatively low anodic potential compared to the classical Ru(bipy) 3 2+ complex. This is an important advantage since the measurements performed with the ECL hydrogel are thus less sensitive to interfering species. An ECL oxidative-reductive mechanism is presented for the ECL-hydrogel. Then we showed that the intensity of the ECL of NADH produced by the enzymatic activity varies with the enzyme substrate concentration. Such sensing approach combines enzymatic selectivity with the ECL advantages at low oxidation potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.