Abstract

To investigate the effect of rosuvastatin on platelet deposition under controlled shear rate conditions and to identify new platelet proteins involved in the interaction with the activating substrate. Platelet-vessel wall interaction and thrombosis take place under dynamic conditions involving the interaction of the exposed damaged vascular wall with the circulating blood cells and proteins. Blood was perfused over type I collagen at different wall shear rates, and platelet deposition was measured by confocal microscopy. Perfused effluent blood was collected, platelets were sequentially extracted based on differential protein solubility, and proteins were separated by 2D gel electrophoresis. Blockade of 3-hydroxy-3-methylglutaryl-coenzyme A reductase significantly reduced platelet deposition and modulated the expression pattern of 18 proteins in the platelet subproteome. Among them, an increase in platelet surface 78-kDa glucose-regulated protein (GRP78), a stress-inducible multifunctional endoplasmic reticulum protein, was clearly apparent. Immunoprecipitation of platelet GRP78 revealed its interaction with tissue factor. Moreover, blockade of surface GRP78 resulted in a substantial increase in platelet deposition and tissue factor procoagulant activity and in a decrease in clotting time. These findings demonstrate that blockade of 3-hydroxy-3-methylglutaryl-coenzyme A reductase reduces platelet deposition and inhibits GRP78 translocation from the platelet surface after shear and collagen activation. For the first time to our knowledge, this study reports on the presence and functional role of GRP78 in platelets and indicates that GRP78 has additional functions beyond those of a molecular chaperone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.