Abstract
The authors describe enzyme based nanobiosensors for continuous monitoring of glucose, with the long term goal of using them as smart diagnostic tattoos. The method is founded on two main features: (1) The fluorescence intensity and decay times of glucose oxidase (GOx) and of GOx labeled with fluorescein (FS) or a ruthenium chelate (Ru) reversibly change during interaction with glucose; (2) The (labeled) enzyme is linked to magnetite magnetic nanoparticles (MNPs) which permits the MNPs to be physically manipulated. It is found that a stable link between MNPs and GOx is only accomplished if the number of amino groups on the GOX is artificially enlarged (to form GOxsam). Fluorescence decay data are best acquired with 8-nm MNPs where scattering is marginal; The activity of GOx is found not to be affected by immobilization on the MNPs. The various immobilized enzymes (GOxsam, GOxsam-FS and GOxsam-Ru; all on MNPs) differ only slightly in terms of linear response to glucose which ranged from 0.5 mM to at least 3.5 mM. The RSDs are about 5% (for n = 5), the detection limits are at ∼50 μM, and the sensor lifetimes are >1 week.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.