Abstract

Direct electrochemistry of a glucose oxidase (GOD)–graphene–chitosan nanocomposite was studied. The immobilized enzyme retains its bioactivity, exhibits a surface confined, reversible two-proton and two-electron transfer reaction, and has good stability, activity and a fast heterogeneous electron transfer rate with the rate constant (ks) of 2.83s−1. A much higher enzyme loading (1.12×10−9mol/cm2) is obtained as compared to the bare glass carbon surface. This GOD–graphene–chitosan nanocomposite film can be used for sensitive detection of glucose. The biosensor exhibits a wider linearity range from 0.08mM to 12mM glucose with a detection limit of 0.02mM and much higher sensitivity (37.93μAmM−1cm−2) as compared with other nanostructured supports. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of graphene, and good biocompatibility of chitosan, which enhances the enzyme absorption and promotes direct electron transfer between redox enzymes and the surface of electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.