Abstract
Luminescent silicon nanoparticles have recently attracted attention due to their remarkable stability, covalent functionalisation and tunable photoemission properties. Owing to their biocompatibility, low toxicity, and the small particle size that can be achieved by different synthetic approaches, these nanomaterials are candidates as cellular probes in the field of bioimaging, and potentially for in vivo applications. Tailoring the surface of the particles with active biomolecules such as sugar moieties can be an interesting strategy to increase the kinetics of internalisation or to vary the localisation of nanosystems in living cells. In this study, we synthesised and modified ultrasmall silicon nanoparticles with glucose covalently linked on their surface. Moreover, by varying the ratio between the amount of silicon nanoparticles and the saccharide groups, the amount of glucose, as a capping moiety, can be well controlled. FTIR spectroscopy, NMR spectroscopy, zeta potential measurements and anisotropy decay analysis confirmed the covalent binding of glucose to the nanoparticles. The photophysical behaviour of the surface-functionalised silicon quantum dots was not significantly different to that of the unmodified nanoparticles. In vitro studies demonstrated faster internalisation of the glucose-functionalised nanoparticles into HeLa cells. Different localisation and uptake kinetics of the glucose-modified particles compared to the unmodified particles are discussed in order to reveal the role played by the sugar molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.