Abstract
This paper attempts to further clarify the characteristics of Mecholyl- or epinephrine-stimulated glucose metabolism in the isolated monkey eccrine sweat gland with special emphasis on its relationship to increased sodium transport. The Mecholyl- or epinephrine-stimulated glucose metabolism (as estimated by either lactate or (14)CO(2) production or both) is seen only in the secretory coil and not in the duct. It is markedly suppressed in the absence of glucose, Na(+), or K(+). It is inhibited by ouabain (10(-3) M) and partially suppressed in a low-sodium (40 mM), high-potassium (100 mM) medium.2,4-dinitrophenol (10(-4) M) reverses ouabain-induced inhibition of lactate and (14)CO(2) production but only partially reverses inhibition induced by Na(+) + K(+) deprivation, indicating that metabolic inhibition by ouabain is secondary to the inhibition of sodium transport. There is no synergism between Mecholyl and epinephrine. The absence of any significant inhibitory effects by acetazolamide (Diamox) or HCO(3) (-)-free media suggests that H(+) transport may not be important in sweat gland function. In contrast to a report by Wolfe et al., human eccrine sweat glands show considerable oxidative activity ((14)CO(2) production of 0.42-0.72 nmol/gland/h). These observations are discussed in terms of the linkage between sweat gland energy metabolism and sodium transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.