Abstract
Alzheimer’s disease (AD), an elderly neurodegenerative disorder with a high incidence and progressive memory decline, is one of the most expensive, lethal, and burdening diseases. To date, the pathogenesis of AD has not been fully illustrated. Emerging studies have revealed that cellular senescence and abnormal glucose metabolism in the brain are the early hallmarks of AD. Moreover, cellular senescence and glucose metabolism disturbance in the brain of AD patients may precede amyloid-β deposition or Tau protein phosphorylation. Thus, metabolic reprogramming targeting senescent microglia and astrocytes may be a novel strategy for AD intervention and treatment. Here, we recapitulate the relationships between neural cell senescence and abnormal glucose metabolism (e.g., insulin signaling, glucose and lactate metabolism) in AD. We then discuss the potential perspective of metabolic reprogramming towards an AD intervention, providing a theoretical basis for the further exploration of the pathogenesis of and therapeutic approach toward AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.