Abstract

Patients with type 1 diabetes mellitus (T1DM) have increased thrombosis and platelet activation. The mechanisms for platelet hyperactivation in diabetes are incompletely understood. T1DM is accompanied by hyperglycemia, dyslipidemia, and increased inflammation in addition to an altered hormonal milieu. In vitro analysis of platelets revealed that normal glucose reduces platelet activation whereas hyperglycemic conditions increase platelet activation. We therefore hypothesized that hyperglycemia increases platelet glucose utilization, which increases platelet activation to promote thrombosis. Glucose uptake and glycolysis were increased in platelets isolated from mice given streptozotocin (STZ) to induce T1DM in concert with induction of GLUT3. Platelets from STZ-induced diabetic mice exhibited increased activation after administration of protease-activated receptor 4 peptide and convulxin. In contrast, platelets isolated from GLUT1 and GLUT3 double-knockout (DKO) mice, which lack the ability to use glucose, failed to increase activation in hyperglycemic mice. Diabetic mice displayed decreased survival in a collagen/epinephrine-induced pulmonary embolism model of in vivo platelet activation relative to nondiabetic controls. Survival after pulmonary embolism was increased in diabetic DKO mice relative to nondiabetic controls. These data reveal that increased platelet glucose metabolism in vivo contributes to increased platelet activation and thrombosis in a model of T1DM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.