Abstract

Oxidized low-density lipoprotein (oxLDL) induces survival of colony stimulating factor-1 (CSF-1)-dependent macrophages in vitro. Because atherosclerotic lesion-associated macrophages take up large amounts of glucose, we investigated whether, and how, oxLDL promotes glucose uptake and how glucose metabolism regulates oxLDL-induced macrophage survival. OxLDL-induced macrophage survival required glucose metabolism. OxLDL stimulated 2 phases of glucose uptake, namely acute and chronic, which required PI3K but not MEK1/2 activity. PI3K appeared to regulate glucose transport via glucose transporter affinity and/or mobilization. OxLDL also maintained levels of the prosurvival proteins, Bcl-2 and Bcl-x(L), after CSF-1 had been removed through a combination of mechanisms including transcription, translation, and protein stabilization. Significantly, inhibition of glucose metabolism reduced Bcl-2 and Bcl-x(L) protein levels. MEK1/2 and PI3K activities were also required for oxLDL-induced Bcl-2 and Bcl-x(L) mRNA upregulation. These results suggest that oxLDL enhances macrophage survival in the absence of CSF-1 by inducing PI3K-dependent glucose uptake, which is metabolized to maintain Bcl-2 and Bcl-x(L) protein levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.