Abstract

Glucose metabolism by Prevotella intermedia and Prevotella nigrescens were investigated. Glucose increased the anaerobic growth of these bacteria and promoted the accumulation of intracellular polysaccharide. The polysaccharide was confirmed to be glycogen-like glucan by the absorption spectrum of iodinepolysaccharide complex and the sugar composition. The washed cells consumed glucose anaerobically and converted a part of glucose into the metabolic end-products acetate, formate and succinate. The rest of glucose was confirmed to be accumulated as intracellular polysaccharide. The cells grown in the presence of glucose produced acetate, formate and succinate without exogenous glucose along with the consumption of intracellular polysaccharide. The metabolism of glucose and intracellular polysaccharide required bicarbonate. Prevotella cells had hexokinase and a set of the usual enzymes of the Embden-Meyerhof-Parnas pathway except that phosphofructokinase was pyrophosphate-dependent. A series of enzymes, including phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarase and fumarate reductase, was found for succinate formation. Another series of enzymes, pyruvate oxidoreductase, pyruvate formate-lyase, phosphotransacetylase and acetate kinase was found for acetate and formate formation. Glucose 1,6-bisphosphate-dependent phosphoglucomutase and fructose 1,6-bisphosphate-activated UDP-glucose pyrophosphorylase were detected for glycogen synthesis, while glycogen phosphorylase was for glycogen degradation. The capacity of intracellular polysaccharide formation in addition to glucose fermentation could be advantageous for survival in the supragingival area as well as in the subgingival area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call