Abstract

BackgroundThe incidence of metabolic disease increases in early menopause. Low birth weight influences the age at menopause. Thus, this study tested the hypothesis that intrauterine growth restriction programs early reproductive aging and impaired glucose homeostasis in female rats.MethodsEstrous cyclicity, body composition, and glucose homeostasis were determined in female control and growth-restricted rats at 6 and 12 months of age; sex steroids at 12 months.ResultsGlucose intolerance was present at 6 months of age prior to cessation of estrous cyclicity and increased adiposity in female growth-restricted rats. However, female growth-restricted rats exhibited persistent estrus and a significant increase in adiposity, fasting glucose and testosterone at 12 months of age (P<0.05). Insulin release in response to a glucose challenge was blunted in conjunction with a reduction in protein expression of pancreatic glucose transporter type 2 and estrogen receptor alpha at 12 months of age in female growth-restricted rats (P<0.05).ConclusionThis study demonstrated that slow fetal growth programmed glucose intolerance that developed prior to early estrous acyclicity; yet, fasting glucose levels were elevated in conjunction with increased adiposity, accelerated cessation of estrous cyclicity and a shift towards testosterone excess at 12 months of age in female growth-restricted rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call