Abstract
Nutritional programming is a concept proposed to be applied in the field of fish nutrition to improve the use of new diets in aquaculture. This study aimed to investigate for the first time the effects of a glucose injection into the yolk at the alevin stage on intermediary metabolism and growth in adult Nile tilapia (Oreochromis niloticus) at 32–37 weeks later in the life. The early stimulus was performed through direct microinjection of 2 M glucose into yolk sacs of Nile tilapia alevin. Subsequently, in adult tilapia, the long-term effects of glucose stimulus on growth performance, blood metabolites, chemical composition in the liver and muscle, expression of genes involved in glucose transport and metabolism (glycolysis and gluconeogenesis) and related pathways (amino acid catabolism and lipogenesis) were investigated. Our results showed that, even though early glucose injection had no effect on growth performance in adult fish, very few significant effects on glucose metabolism were observed. Furthermore, to evaluate the potential metabolic programming after a dietary challenge, a 2 × 2 factorial design with two early stimuli (0.85% NaCl or 2 M glucose) and two different dietary carbohydrate intakes (medium-carbohydrate diet, CHO-M; high-carbohydrate diet, CHO-H) was performed between weeks 33 and 37. As expected, compared with the CHO-M diet, the CHO-H diet led to decreased growth performance, higher glyceamia and triglyceridemia, higher glycogen and lipid levels in the liver as well as down-regulation of gluconeogenesis and amino acid catabolism gene expressions. More interestingly, although early glucose injection had no significant effect on growth performance, it enhanced the capacities for lipogenesis, glycolysis and gluconeogenesis, particularly in fish that were fed the CHO-H diet. Thus, the nutritional programming of tilapia linked to glucose injection into the yolk of alevins is always visible at the adult stage albeit less intense than what we previously observed in juvenile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.